
1

JEUDI, 30 MARS 2017 18:33

Building the Neo4j Sandbox: AWS, ECS, Docker,
Python, Neo4j, ++
Ryan Boyd, 30.03.2017

http://ptat.ch/neo4j-sandbox-tech-overview http://ptat.ch/neo4j-sandbox
-tech-overview

https://www.youtube.com/watch?v=2XbNhAJ9wh0 https://www.youtub
e.com/watch?v=2XbNhAJ9wh0

Goals
Fast on-boarding experience – to have good conversion rates

Data that users care about

Guided experience thru that data and the Neo4j product

Fast time to first line of code

Isolated environment – no impact when mutating data on other
users

Key stakeholders
End-users

Neo4j CEO – wants everyone to use the product

Marketing – wants to be able to reach the users (send messages
about events for instance, or new edition of the O’Reilly book,
etc.)

Developer relations: half-engineering, marketing – wants to be
able to reach users also (get their feedback, go to events and
build the community)

Risks
« 130 people launching a sandbox in the last hour »

Costs – fixed costs for capacity (machines ready to serve users),
variables costs for demand (more machines with demands)

Low data quality: not asking for name, company, country, state,
biz e-mail – but OAuth2-provided and derived data, much better
quality

Lower user «stickiness» vs downloads: encourage downloads

Operational nightmares – server maintenance and security

http://ptat.ch/neo4j-sandbox-tech-overview
https://www.youtube.com/watch?v=2XbNhAJ9wh0

2

(patches, outages, memory/CPU management), scaling
challenges (spikes in load, drops in load): we’re only a handful of
persons (1-3 persons)

Techology stack
Docker Images – provides the desired CPU allocation, as well as
memory and storage isolation

Amazon EC2 Container Services (Amazon ECS) – every Neo4j
sandbox is a task on the ECS, that has different docker images in
it

AWS Lambda – serverless computing: similar to Google
AppEngine; scales indefinitely, while allowing to use any library
(a restriction Google AppEngine had), such as Python library with
compiled C packages; has support for launching Docker images

Neo4j Server

Python – every Lambda function is written in Python

Auth0 and JWT (Jason Web Tokens) – to authenticate on the
server, a cryptographically signed set of data, without calling
external APIs

Bootstrap and jQuery for the front-end

Data providers, namely to retrieve a validated e-mail address:
Google, LinkedIn, GitHub, Twitter provide user data

sent to FullContact, to lookup by e-mail for complements;

also using MaxMind, to lookup by IP the country and state
the user comes from

Features
Social Sign-in: launched with Twitter, GitHub, Google; LinkedIn
later

Code snippets

Hidden Sandboxes

Streaming Twitter Sandbox (~ 36min.)

Nginx proxy for SSL – using high ports, for those corporate
firewalls

Single Sign-on to Neo4j Browser app: a custom plug-in validates
a JWT (JSON auth-token) sent by Auth0

E-mail Nurturing

Architecture
voir le diagramme vers ~ 39min.

3

S3 Static hosting + CloudFlare CDN

Amazon EC2 Container Services (ECS) machines, running 16
Docker Neo4j images – among them 3 Nginx proxy, distributed
on 3 of the machines

Amazon Lambda functions for provisioning

Amazon EC2 Autoscaling Group for autoscaling

Amazon Elastic Load Balancers (ELB)

NGINX proxy for SSL

Lessons learned
Quotas :-(

Balancing load spikes smartly

CSS Hell – namespacing especially, using tooling

Coding is rewarding

What’s next
More use cases: BYO (bring-your-own data), data journalism, API
data (GitHub data), enterprise use cases (fraud detection)

Sharing with colleagues and friends – JWT and Auth0 challenge

Q&A
How long to build? 6-9 months on part time, for infrastructure
side

How many people to operate? 1 person, almost zero issue

How many people to build? 1 person, the presenter

How much memory and CPU? 16MB for each sandbox; 768MB
for each machine; ¼ CPU-core per sandbox, being allowed to
spike up to how much it needs.

See also
Neo4j Docker Image http://hub.docker.com/_/neo4j

Neo4j GraphGists https://neo4j.com/graphgists/ teaching tools which
allow you to explore how data in a particular domain would be
modeled as a graph and see some example queries of that
graph data

PLANÈTE CHARMILLES, GENÈVE, GENÈVE, SUISSE • 20° MOSTLY SUNNY

Created in Day One

http://hub.docker.com/_/neo4j
https://neo4j.com/graphgists/

4

