
1

MERCREDI, 10 MAI 2017 10:24

Building a recommendation engine with Neo4j
· GraphConnect Training
Skills Matter, CodeNode London https://skillsmatter.com/event-space

· Pieter Cailliau · 10.05.2017 9h30–17h

Material
Neo4j 3.1.4 https://neo4j.com/download/

Neo4j Cypher Reference Card 3.1.4 https://neo4j.com/docs/cypher-re

fcard/current/

APOC plug-in https://github.com/neo4j-contrib/neo4j-apoc-procedures

Meetup groups CSV imports · available online, but we’re using
the subset from the provided Neo4j USB key

Guides
Building a recommendation engine with Neo4j · Slides https://s3-e

u-west-1.amazonaws.com/neo4j-training-slides/reco.pdf (all slides http://s3

-eu-west-1.amazonaws.com/neo4j-training-slides/index.html)

APOC User Guide https://neo4j-contrib.github.io/neo4j-apoc-procedures

/

In-Neo4j browser slides:

:play http://guides.neo4j.com/reco/file
:play
http://guides.neo4j.com/reco/file/01_similar_gro
ups_by_topic.html
:play

https://skillsmatter.com/event-space
https://neo4j.com/download/
https://neo4j.com/docs/cypher-refcard/current/
https://github.com/neo4j-contrib/neo4j-apoc-procedures
https://s3-eu-west-1.amazonaws.com/neo4j-training-slides/reco.pdf
http://s3-eu-west-1.amazonaws.com/neo4j-training-slides/index.html
https://neo4j-contrib.github.io/neo4j-apoc-procedures/

2

http://guides.neo4j.com/reco/answers/1.html
:play
http://guides.neo4j.com/reco/file/02_my_similar_
groups.html
:play
http://guides.neo4j.com/reco/file/03_my_interest
s.html
:play
http://guides.neo4j.com/reco/file/04_events.html
:play
http://guides.neo4j.com/reco/answers/4.html
:play
http://guides.neo4j.com/reco/file/05_venues.html
:play
http://guides.neo4j.com/reco/answers/5a.html
:play
http://guides.neo4j.com/reco/answers/5b.html
:play
http://guides.neo4j.com/reco/file/06_rsvps.html
:play
http://guides.neo4j.com/reco/answers/6.html
:play
http://guides.neo4j.com/reco/file/07_procedures.
html
:play
http://guides.neo4j.com/reco/answers/7.html
:play
http://guides.neo4j.com/reco/file/08_latent_soci
al_graph.html
:play
http://guides.neo4j.com/reco/answers/8.html
:play
http://guides.neo4j.com/reco/file/09_scoring.htm
l
:play
http://guides.neo4j.com/reco/file/10_free_for_al
l.html

Fast indexes
Operators using indexes:

equality

STARTS WITH, ENDS WITH

CONTAINS

range searches

(non-) existence checks

Database setup script
At any stage, an overview of existing node labels and relations can
be visualized:

CALL db.schema

3

Part one · Recommend Groups by Topic

LOAD CSV WITH HEADERS FROM "file:///groups.csv"
AS row
 RETURN row LIMIT 10

:play http://guides.neo4j.com/reco-
nyc/file/01_similar_groups_by_topic.html

LOAD CSV WITH HEADERS FROM "file:///groups.csv"
AS row
 CREATE (:Group { id:row.id, name:row.name,
 urlname:row.urlname,
rating:toInt(row.rating),
 created:toInt(row.created) })

MATCH (g:Group) RETURN g.id, g.name, g.urlname

CREATE CONSTRAINT ON (t:Topic) ASSERT t.id IS
UNIQUE
CREATE CONSTRAINT ON (g:Group) ASSERT g.id IS
UNIQUE
:schema
CALL db.constraints()

LOAD CSV WITH HEADERS FROM
"file:///groups_topics.csv" AS row
 RETURN row LIMIT 10

LOAD CSV WITH HEADERS FROM
"file:///groups_topics.csv" AS row
 MERGE (topic:Topic {id: row.id})
 ON CREATE SET topic.name = row.name,
topic.urlkey = row.urlkey

MATCH (t:Topic) RETURN t.id, t.name

LOAD CSV WITH HEADERS FROM
"file:///groups_topics.csv" AS row
 MATCH (topic:Topic {id: row.id})
 MATCH (group:Group {id: row.groupId})
 MERGE (group)-[:HAS_TOPIC]->(topic)

MATCH (group:Group)-[:HAS_TOPIC]->(topic:Topic)
 RETURN group, topic LIMIT 10

CREATE INDEX ON :Group(name)
CREATE INDEX ON :Topic(name)
CALL db.indexes()

Part two · Groups similar to mine

LOAD CSV WITH HEADERS FROM "file:///members.csv"
AS row
RETURN row LIMIT 10

CREATE CONSTRAINT ON (m:Member) ASSERT m.id IS
UNIQUE

USING PERIODIC COMMIT 10000

4

 LOAD CSV WITH HEADERS
 FROM "file:///members.csv" AS row
 WITH DISTINCT row.id AS id, row.name AS name
 MERGE (member:Member {id: id})
 ON CREATE SET member.name = name

USING PERIODIC COMMIT 50000
 LOAD CSV WITH HEADERS
 FROM "file:///members.csv" AS row
 WITH row WHERE NOT row.joined is null
 MATCH (member:Member {id: row.id})
 MATCH (group:Group {id: row.groupId})
 MERGE (member)-[membership:MEMBER_OF]->(group)
 ON CREATE SET
membership.joined=toInt(row.joined);
 // Set 408557 properties, created 408557
relationships, statement completed in 126404 ms.

CREATE INDEX ON :Member(name)

Part three · Member Interests (Topics)

LOAD CSV WITH HEADERS FROM "file:///members.csv"
AS row
RETURN row.id, row.topics LIMIT 10

USING PERIODIC COMMIT 50000
 LOAD CSV WITH HEADERS FROM
"file:///members.csv" AS row

 WITH split(row.topics, ";") AS topics, row.id
AS memberId
 UNWIND topics AS topicId

 WITH DISTINCT memberId, topicId
 MATCH (member:Member {id: memberId})
 MATCH (topic:Topic {id: topicId})
 MERGE (member)-[:INTERESTED_IN]->(topic)
 // Created 1079735 relationships, statement
completed in 219249 ms.

MATCH (m:Member)-[:MEMBER_OF]->()-[:HAS_TOPIC]->
(topic)
 WHERE NOT (m)-[:INTERESTED_IN]->(topic)

 WITH m, topic, COUNT(*) AS times
 WHERE times >= 3

 MERGE (m)-[interestedIn:INTERESTED_IN]->
(topic)
 SET interestedIn.inferred = true
 // Set 195000 properties, created 195000
relationships, statement completed in 67565 ms.

Part four · Event Recommendations

LOAD CSV WITH HEADERS FROM "file:///events.csv"
AS row
 RETURN row LIMIT 5

5

CREATE CONSTRAINT ON (e:Event) ASSERT e.id IS
UNIQUE
CREATE INDEX ON :Event(time)

USING PERIODIC COMMIT 10000
LOAD CSV WITH HEADERS FROM "file:///events.csv"
AS row
MERGE (event:Event {id: row.id})
ON CREATE SET event.name = row.name,
 event.time = toInt(row.time),
 event.utcOffset =
toInt(row.utc_offset)
// Added 10074 labels, created 10074 nodes, set
40296 properties, statement completed in 3734
ms.

MATCH (event:Event) RETURN event LIMIT 10

USING PERIODIC COMMIT 10000
LOAD CSV WITH HEADERS FROM "file:///events.csv"
AS row

WITH distinct row.group_id as groupId, row.id as
eventId
MATCH (group:Group {id: groupId})
MATCH (event:Event {id: eventId})
MERGE (group)-[:HOSTED_EVENT]->(event)
// Created 10074 relationships, statement
completed in 2694 ms.

MATCH (group:Group)-[hosted:HOSTED_EVENT]->
(event)
WHERE group.name STARTS WITH 'Neo4j' AND
event.time < timestamp()
RETURN event, group, hosted
ORDER BY event.time DESC LIMIT 10

Part five · Venues

LOAD CSV WITH HEADERS FROM "file:///venues.csv"
AS row
RETURN row LIMIT 10

CREATE CONSTRAINT ON (v:Venue)
ASSERT v.id IS UNIQUE

LOAD CSV WITH HEADERS FROM "file:///venues.csv"
AS row
MERGE (venue:Venue {id: row.id})
ON CREATE SET venue.name = row.name,
 venue.latitude = tofloat(row.lat),
 venue.longitude =
tofloat(row.lon),
 venue.address = row.address_1
// Added 400 labels, created 400 nodes, set 2000
properties, statement completed in 260 ms.

LOAD CSV WITH HEADERS FROM "file:///events.csv"
AS row
MATCH (venue:Venue {id: row.venue_id})
MATCH (event:Event {id: row.id})

6

MERGE (event)-[:VENUE]->(venue)
// Created 2023 relationships, statement
completed in 853 ms

MATCH (venue:Venue)
WHERE EXISTS(venue.latitude) AND
EXISTS(venue.longitude)
RETURN COUNT(*)
// COUNT(*): 1706

Part six · RSVPs

LOAD CSV WITH HEADERS FROM "file:///rsvps.csv"
AS row
RETURN row LIMIT 10

USING PERIODIC COMMIT 10000
LOAD CSV WITH HEADERS FROM "file:///rsvps.csv"
AS row
WITH row WHERE row.response = "yes"

MATCH (member:Member {id: row.member_id})
MATCH (event:Event {id: row.event_id})
MERGE (member)-[rsvp:RSVPD {id: row.rsvp_id}]->
(event)
ON CREATE SET rsvp.created = toint(row.created),
 rsvp.lastModified =
toint(row.mtime),
 rsvp.guests = toint(row.guests)
// Set 1472664 properties, created 368166
relationships, statement completed in 49032 ms.

MATCH (event:Event)<-[rsvp:RSVPD]-(attendee)
WHERE event.name CONTAINS 'An Event'
RETURN *

Part seven · Procedures

CALL dbms.procedures()

CREATE CONSTRAINT ON (p:Photo) ASSERT p.id IS
UNIQUE

CALL
apoc.load.json("https://api.meetup.com/graphdb-
london/photos?&sign=true&photo-host=public")
YIELD value AS document

WITH document WHERE
document.photo_album.event.id IS NOT NULL

MATCH (event:Event {id:
document.photo_album.event.id})
OPTIONAL MATCH (member:Member {id:
tostring(document.member.id)})

MERGE (photo:Photo {id: document.id})
ON CREATE SET photo.link = document.link,
photo.created = document.created

7

MERGE (photo)-[:POSTED_IN_EVENT]->(event)

WITH photo, member WHERE member is NOT NULL

MERGE (member)-[:POSTED_PHOTO]->(photo)
// Added 189 labels, created 189 nodes, set 567
properties, created 372 relationships, statement
completed in 1050 ms.

Part eight · Latent social graph & transactions
Materialising the latent social graph – a first chunk of 500

MATCH (m:Member) WHERE size((m)-[:RSVPD]->())
>= 7
SET m:Process
RETURN count(*)
// COUNT(*): 12659

MATCH (m1:Member:Process) WITH m1 LIMIT 500
REMOVE m1:Process
WITH m1
MATCH (m1)-[:RSVPD]->(event)<-[:RSVPD]-(m2)

WITH m1, m2, COUNT(*) AS times
WHERE times >= 5

MERGE (m1)-[:FRIENDS]-(m2)
RETURN count(*);
// COUNT(*): 67826

Materialising the latent social graph – transacting chunks of 500
relations periodically

call apoc.periodic.commit("
 MATCH (m1:Member:Process) WITH m1 LIMIT
{limit} REMOVE m1:Process
 WITH m1 MATCH (m1)-[:RSVPD]->(event)<-
[:RSVPD]-(m2)
 WITH m1, m2, COUNT(*) AS times WHERE times >=
5
 MERGE (m1)-[:FRIENDS]-(m2) RETURN count(*)
",{limit:500})
// Started streaming 1 record after 126510 ms
and completed after 126510 ms.

MATCH ()-[:FRIENDS]-() RETURN COUNT(*)
// COUNT(*): 623584

Part nine · Scoring recommendations
Scoring our friends – tag all members that we’re going to process

MATCH (m:Member)-[:FRIENDS]-()
SET m:Process
RETURN count(DISTINCT m)
// COUNT(DISTINCT m): 13095

8

Adding a score to the FRIENDS relationship

call apoc.periodic.commit("
 MATCH (m1:Process)

 WITH m1 LIMIT {limit}
 REMOVE m1:Process

 WITH m1
 MATCH (m1)-[friendship:FRIENDS]-(m2:Member)

 WITH m1, m2, friendship
 MATCH (m1)-[:RSVPD]->(commonEvent)<-[:RSVPD]-
(m2)

 WITH m1, m2, friendship, COUNT(commonEvent) AS
commonEvents
 WITH m1, m2, friendship, commonEvents,
SIZE((m1)-[:RSVPD]->()) AS m1Rsvps, SIZE((m2)-
[:RSVPD]->()) AS m2Rsvps
 WITH m1, m2, friendship, commonEvents,
m1Rsvps, m2Rsvps, (2 * 1.0 * commonEvents) /
(m1Rsvps + m2Rsvps) AS diceSimilarity

 SET friendship.score = diceSimilarity

 RETURN COUNT(*)
",{limit:500})
// Started streaming 1 record after 389120 ms
and completed after 389120 ms.

Exercises
At any stage, a view of the query execution plan can be visualized:

PROFILE MATCH …

Part one · Recommend Groups by Topic

Most popular topic?

MATCH (t:Topic)<-[:HAS_TOPIC]-()
RETURN t.name, COUNT(*) AS count
ORDER BY count DESC

Group created most recently?

MATCH (group:Group) RETURN group
ORDER BY group.created DESC LIMIT 1

How much groups have been running since more than 4 years?

MATCH (g:Group)
WHERE (timestamp() - g.created) / 1000 / 3600 /
24 / 365 >= 4

9

RETURN count(g)

Find groups with 'Neo4j' or 'Data' in their name

MATCH (g:Group)
WHERE g.name CONTAINS 'Neo4j' OR g.name CONTAINS
'Data'
RETURN g

What are the distinct topics for those groups ?

MATCH (g:Group)-[:HAS_TOPIC]->(t:Topic)
WHERE g.name CONTAINS 'Neo4j' OR g.name CONTAINS
'Data'
RETURN t.name, count(*)

Find groups that have the same topics as the Neo4j Meetup group

MATCH (group:Group)
WHERE (group.name CONTAINS 'Graph Database' OR
group.name CONTAINS 'Neo4j')

MATCH (group)-[:HAS_TOPIC]->(topic)<-
[:HAS_TOPIC]-(otherGroup)
RETURN otherGroup.name, COUNT(topic) AS
topicsInCommon,
 COLLECT(topic.name) AS topics
ORDER BY topicsInCommon DESC, otherGroup.name
LIMIT 10

Part two · Groups similar to mine

Exclude groups I’m a member of

MATCH (member:Member) WHERE member.name =
'Pieter Ennes'
MATCH (group:Group)
WHERE group.name CONTAINS 'Graph Database' OR
group.name CONTAINS 'Neo4j'

MATCH (group)-[:HAS_TOPIC]->(topic)<-
[:HAS_TOPIC]-(otherGroup:Group)
WHERE NOT EXISTS((member)-[:MEMBER_OF]->
(otherGroup))
RETURN otherGroup.name,
 COUNT(topic) AS topicsInCommon,
 COLLECT(topic.name) AS topics
ORDER BY topicsInCommon DESC
LIMIT 10

Find my similar groups

MATCH (member:Member) WHERE member.name CONTAINS
'Pieter Ennes'

10

MATCH (member)-[:MEMBER_OF]->()-[:HAS_TOPIC]->()
<-[:HAS_TOPIC]-(otherGroup:Group)
WHERE NOT EXISTS ((member)-[:MEMBER_OF]->
(otherGroup))
RETURN otherGroup.name,
 COUNT(*) AS topicsInCommon
ORDER BY topicsInCommon DESC
LIMIT 10

Find people who are members of the most groups

MATCH (member:Member)-[:MEMBER_OF]->()
WITH member, COUNT(*) AS groups
ORDER BY groups DESC
LIMIT 10
RETURN member.name, groups

Part three · Member Interests (Topics)

Find my similar groups – using interests

MATCH (member:Member {name: 'Pieter Cailliau'})-
[:INTERESTED_IN]->(topic),
 (member)-[:MEMBER_OF]->(group)-
[:HAS_TOPIC]->(topic)
WITH member, topic, COUNT(*) AS score
MATCH (topic)<-[:HAS_TOPIC]-(otherGroup)
WHERE NOT (member)-[:MEMBER_OF]->(otherGroup)
RETURN otherGroup.name, COLLECT(topic.name),
SUM(score) as score
ORDER BY score DESC
LIMIT 10

Find someone who didn’t specify any interests but is member of a
few groups

MATCH (member:Member) WHERE NOT (member)-
[:INTERESTED_IN]->()
MATCH (member)-[:MEMBER_OF]->()
RETURN member.name, count(*) as groups
ORDER BY count(*) DESC
LIMIT 50

Someone from that list who didn’t specify any interests when they
signed up for meetup.com

MATCH (member:Member {name: 'Pieter Cailliau'})-
[:INTERESTED_IN]->(topic), (member)-
[:MEMBER_OF]->(group)-[:HAS_TOPIC]->(topic)
WITH member, topic, COUNT(*) AS score
MATCH (topic)<-[:HAS_TOPIC]-(otherGroup)
WHERE NOT (member)-[:MEMBER_OF]->(otherGroup)
RETURN otherGroup.name, COLLECT(topic.name),
SUM(score) as score
ORDER BY score DESC

11

Persisting inferred interests

MATCH (m:Member)-[:MEMBER_OF]->()-[:HAS_TOPIC]->
(topic)
WHERE NOT (m)-[:INTERESTED_IN]->(topic)

WITH m, topic, COUNT(*) AS times
WHERE times >= 3

MERGE (m)-[interestedIn:INTERESTED_IN]->(topic)
SET interestedIn.inferred = true

Persisting inferred interests with a production sized dataset – in
batches

CALL apoc.periodic.iterate(
"MATCH (m:Member)-[:MEMBER_OF]->()-[:HAS_TOPIC]-
>(topic)
WHERE NOT (m)-[:INTERESTED_IN]->(topic)

WITH m, topic, COUNT(*) AS times
WHERE times >= 3
RETURN m,topic",
"MERGE (m)-[interestedIn:INTERESTED_IN]->(topic)
SET interestedIn.inferred = true",
{batchSize:1000, iterateList:true,
parallel:true})

Find my similar groups (even if I don’t know it yet)

MATCH (member:Member)-[:INTERESTED_IN]->(topic),
 (member)-[:MEMBER_OF]->(group)-
[:HAS_TOPIC]->(topic)
WHERE member.name CONTAINS 'Pieter Cailliau'
WITH member, topic, COUNT(*) AS score
MATCH (topic)<-[:HAS_TOPIC]-(otherGroup)
WHERE NOT (member)-[:MEMBER_OF]->(otherGroup)
RETURN otherGroup.name, COLLECT(topic.name),
SUM(score) as score
ORDER BY score DESC

Part four · Event Recommendations

Find future events in my groups

MATCH (member:Member)-[:MEMBER_OF]->(group)-
[:HOSTED_EVENT]->(futureEvent)
WHERE member.name CONTAINS 'Pieter Cailliau' AND
futureEvent.time > timestamp()
RETURN group.name,
 futureEvent.name,
 round((futureEvent.time - timestamp()) /
(24.0*60*60*1000)) AS days
ORDER BY days

12

Find future events for my topics

MATCH (member:Member) WHERE member.name CONTAINS
'Pieter Cailliau'
MATCH (futureEvent:Event) WHERE futureEvent.time
> timestamp()

WITH member, futureEvent, EXISTS((member)-
[:MEMBER_OF]->()-[:HOSTED_EVENT]->(futureEvent))
AS myGroup
OPTIONAL MATCH (member)-[:INTERESTED_IN]->()<-
[:HAS_TOPIC]-()-[:HOSTED_EVENT]->(futureEvent)

WITH member, futureEvent, myGroup, COUNT(*) AS
commonTopics
MATCH (futureEvent)<-[:HOSTED_EVENT]-(group)

RETURN futureEvent.name, futureEvent.time,
group.name, commonTopics, myGroup
ORDER BY futureEvent.time

Filter out events which have less than 3 common topics

MATCH (member:Member) WHERE member.name CONTAINS
'Pieter Cailliau'
MATCH (futureEvent:Event) WHERE futureEvent.time
> timestamp()

WITH member, futureEvent, EXISTS((member)-
[:MEMBER_OF]->()-[:HOSTED_EVENT]->(futureEvent))
AS myGroup
OPTIONAL MATCH (member)-[:INTERESTED_IN]->()<-
[:HAS_TOPIC]-()-[:HOSTED_EVENT]->(futureEvent)

WITH member, futureEvent, myGroup, COUNT(*) AS
commonTopics
WHERE commonTopics >= 3

MATCH (futureEvent)<-[:HOSTED_EVENT]-(group)

RETURN futureEvent.name, futureEvent.time,
group.name, commonTopics, myGroup
ORDER BY futureEvent.time

Filter out events which have less than 3 common topics

MATCH (member:Member) WHERE member.name CONTAINS
'Pieter Cailliau'
MATCH (futureEvent:Event)
WHERE timestamp() + (7 * 24 * 60 * 60 * 1000) >
futureEvent.time > timestamp()

WITH member, futureEvent, EXISTS((member)-
[:MEMBER_OF]->()-[:HOSTED_EVENT]->(futureEvent))
AS myGroup
OPTIONAL MATCH (member)-[:INTERESTED_IN]->()<-
[:HAS_TOPIC]-()-[:HOSTED_EVENT]->(futureEvent)

13

WITH member, futureEvent, myGroup, COUNT(*) AS
commonTopics
WHERE commonTopics >= 3

MATCH (futureEvent)<-[:HOSTED_EVENT]-(group)

RETURN futureEvent.name, futureEvent.time,
group.name, commonTopics, myGroup
ORDER BY futureEvent.time

Sorting the results

MATCH (member:Member) WHERE member.name CONTAINS
'Pieter Cailliau'
MATCH (futureEvent:Event)
WHERE timestamp() + (7 * 24 * 60 * 60 * 1000) >
futureEvent.time > timestamp()

WITH member, futureEvent, EXISTS((member)-
[:MEMBER_OF]->()-[:HOSTED_EVENT]->(futureEvent))
AS myGroup
OPTIONAL MATCH (member)-[:INTERESTED_IN]->()<-
[:HAS_TOPIC]-()-[:HOSTED_EVENT]->(futureEvent)

WITH member, futureEvent, myGroup, COUNT(*) AS
commonTopics
WHERE commonTopics >= 3
MATCH (futureEvent)<-[:HOSTED_EVENT]-(group)

WITH futureEvent, group, commonTopics, myGroup,
CASE WHEN myGroup THEN 5 ELSE 0 END AS
myGroupScore
WITH futureEvent, group, commonTopics, myGroup,
myGroupScore, round((futureEvent.time -
timestamp()) / (24.0*60*60*1000)) AS days

RETURN futureEvent.name, futureEvent.time,
group.name, commonTopics, myGroup, days,
myGroupScore + commonTopics - days AS score
ORDER BY score DESC
LIMIT 10

Part five · Venues

Distance to venues

WITH point({latitude: 51.518698, longitude:
-0.086146}) AS trainingVenue
MATCH (venue:Venue)

WITH venue, distance(point(venue),
trainingVenue) AS distance
RETURN venue.id, venue.name, venue.address,
distance
ORDER BY distance LIMIT 10

Return distance to venue

14

MATCH (member:Member) WHERE member.name CONTAINS
'Pieter Cailliau'

MATCH (futureEvent:Event)
WHERE timestamp() + (7 * 24 * 60 * 60 * 1000) >
futureEvent.time > timestamp()

WITH member, futureEvent, EXISTS((member)-
[:MEMBER_OF]->()-[:HOSTED_EVENT]->(futureEvent))
AS myGroup
OPTIONAL MATCH (member)-[:INTERESTED_IN]->()<-
[:HAS_TOPIC]-()-[:HOSTED_EVENT]->(futureEvent)

WITH member, futureEvent, myGroup, COUNT(*) AS
commonTopics
WHERE commonTopics >= 3
MATCH (venue)<-[:VENUE]-(futureEvent)<-
[:HOSTED_EVENT]-(group)
WITH futureEvent, group, venue, commonTopics,
myGroup, distance(point(venue), point({latitude:
51.518698, longitude: -0.086146})) AS distance
WITH futureEvent, group, venue, commonTopics,
myGroup, distance, CASE WHEN myGroup THEN 5 ELSE
0 END AS myGroupScore
WITH futureEvent, group, venue, commonTopics,
myGroup, distance, myGroupScore,
round((futureEvent.time - timestamp()) /
(24.0*60*60*1000)) AS days

RETURN futureEvent.name, futureEvent.time,
group.name, venue.name, commonTopics, myGroup,
days, distance , myGroupScore + commonTopics -
days AS score
ORDER BY score DESC

Filter out events < 1km away

MATCH (member:Member) WHERE member.name CONTAINS
'Pieter Cailliau'

MATCH (futureEvent:Event)
WHERE timestamp() + (7 * 24 * 60 * 60 * 1000) >
futureEvent.time > timestamp()

WITH member, futureEvent, EXISTS((member)-
[:MEMBER_OF]->()-[:HOSTED_EVENT]->(futureEvent))
AS myGroup
OPTIONAL MATCH (member)-[:INTERESTED_IN]->()<-
[:HAS_TOPIC]-()-[:HOSTED_EVENT]->(futureEvent)

WITH member, futureEvent, myGroup, COUNT(*) AS
commonTopics
WHERE commonTopics >= 3
MATCH (venue)<-[:VENUE]-(futureEvent)<-
[:HOSTED_EVENT]-(group)

WITH futureEvent, group, venue,commonTopics,
myGroup, distance(point(venue), point({latitude:
51.518698, longitude: -0.086146})) AS distance
WHERE distance < 1000

15

WITH futureEvent, group, venue, commonTopics,
myGroup, distance, CASE WHEN myGroup THEN 5 ELSE
0 END AS myGroupScore
WITH futureEvent, group, venue, commonTopics,
myGroup, distance, myGroupScore,
round((futureEvent.time - timestamp()) /
(24.0*60*60*1000)) AS days

RETURN futureEvent.name, futureEvent.time,
group.name, venue.name, commonTopics, myGroup,
days, distance, myGroupScore + commonTopics -
days AS score
ORDER BY score DESC

Part six · RSVPs

Our previous RSVPS – add a score for an event based on previous
events we’ve attended in that group

MATCH (member:Member) WHERE member.name CONTAINS
'Pieter Cailliau'

MATCH (futureEvent:Event)
WHERE timestamp() + (7 * 24 * 60 * 60 * 1000) >
futureEvent.time > timestamp()

WITH member, futureEvent, EXISTS((member)-
[:MEMBER_OF]->()-[:HOSTED_EVENT]->(futureEvent))
AS myGroup
OPTIONAL MATCH (member)-[:INTERESTED_IN]->()<-
[:HAS_TOPIC]-()-[:HOSTED_EVENT]->(futureEvent)

WITH member, futureEvent, myGroup, COUNT(*) AS
commonTopics
WHERE commonTopics >= 3

OPTIONAL MATCH (member)-[rsvp:RSVPD]->
(previousEvent)<-[:HOSTED_EVENT]-()-
[:HOSTED_EVENT]->(futureEvent)
WHERE previousEvent.time < timestamp()

WITH futureEvent, commonTopics, myGroup,
COUNT(rsvp) AS previousEvents

MATCH (venue)<-[:VENUE]-(futureEvent)<-
[:HOSTED_EVENT]-(group)

WITH futureEvent, group, venue, commonTopics,
myGroup, previousEvents, distance(point(venue),
point({latitude: 51.518698, longitude:
-0.086146})) AS distance
WITH futureEvent, group, venue, commonTopics,
myGroup, previousEvents, distance, CASE WHEN
myGroup THEN 5 ELSE 0 END AS myGroupScore
WITH futureEvent, group, venue, commonTopics,
myGroup, previousEvents, distance, myGroupScore,
round((futureEvent.time - timestamp()) /
(24.0*60*60*1000)) AS days

RETURN futureEvent.name, futureEvent.time,
group.name, venue.name, commonTopics, myGroup,

16

previousEvents, days, distance, myGroupScore +
commonTopics - days AS score
ORDER BY score DESC

Events at my venue

MATCH (member:Member) WHERE member.name CONTAINS
'Pieter Cailliau'

MATCH (futureEvent:Event)
WHERE timestamp() + (7 * 24 * 60 * 60 * 1000) >
futureEvent.time > timestamp()

WITH member, futureEvent, EXISTS((member)-
[:MEMBER_OF]->()-[:HOSTED_EVENT]->(futureEvent))
AS myGroup
OPTIONAL MATCH (member)-[:INTERESTED_IN]->()<-
[:HAS_TOPIC]-()-[:HOSTED_EVENT]->(futureEvent)

WITH member, futureEvent, myGroup, COUNT(*) AS
commonTopics
WHERE commonTopics >= 3
OPTIONAL MATCH (member)-[rsvp:RSVPD]->
(previousEvent)<-[:HOSTED_EVENT]-()-
[:HOSTED_EVENT]->(futureEvent)
WHERE previousEvent.time < timestamp()

WITH member, futureEvent, commonTopics, myGroup,
COUNT(rsvp) AS previousEvents
MATCH (venue)<-[:VENUE]-(futureEvent)<-
[:HOSTED_EVENT]-(group)

WITH member, futureEvent, group, venue,
commonTopics, myGroup, previousEvents,
distance(point(venue), point({latitude:
51.518698, longitude: -0.086146})) AS distance
OPTIONAL MATCH (member)-[rsvp:RSVPD]->
(previousEvent)-[:VENUE]->(venue)
WHERE previousEvent.time < timestamp()

WITH futureEvent, group, venue, commonTopics,
myGroup, previousEvents, distance,
COUNT(previousEvent) AS eventsAtVenue
WITH futureEvent, group, venue, commonTopics,
myGroup, previousEvents, distance,
eventsAtVenue, CASE WHEN myGroup THEN 5 ELSE 0
END AS myGroupScore
WITH futureEvent, group, venue, commonTopics,
myGroup, previousEvents, distance,
eventsAtVenue, myGroupScore,
round((futureEvent.time - timestamp()) /
(24.0*60*60*1000)) AS days

RETURN futureEvent.name, futureEvent.time,
group.name, venue.name, commonTopics, myGroup,
previousEvents, days, distance, eventsAtVenue,
myGroupScore + commonTopics + eventsAtVenue -
days AS score
ORDER BY score DESC

17

Events near my venues

MATCH (member:Member) WHERE member.name CONTAINS
'Pieter Cailliau'
MATCH (futureEvent:Event)
WHERE timestamp() + (7 * 24 * 60 * 60 * 1000) >
futureEvent.time > timestamp()

WITH member, futureEvent, EXISTS((member)-
[:MEMBER_OF]->()-[:HOSTED_EVENT]->(futureEvent))
AS myGroup
OPTIONAL MATCH (member)-[:INTERESTED_IN]->()<-
[:HAS_TOPIC]-()-[:HOSTED_EVENT]->(futureEvent)

WITH member, futureEvent, myGroup, COUNT(*) AS
commonTopics
WHERE commonTopics >= 3
OPTIONAL MATCH (member)-[rsvp:RSVPD]->
(previousEvent)<-[:HOSTED_EVENT]-()-
[:HOSTED_EVENT]->(futureEvent)
WHERE previousEvent.time < timestamp()

WITH member, futureEvent, commonTopics, myGroup,
COUNT(rsvp) AS previousEvents
MATCH (venue)<-[:VENUE]-(futureEvent)<-
[:HOSTED_EVENT]-(group)

WITH member, futureEvent, group, venue,
commonTopics, myGroup, previousEvents,
distance(point(venue), point({latitude:
51.518698, longitude: -0.086146})) AS distance
OPTIONAL MATCH (member)-[rsvp:RSVPD]->
(previousEvent)-[:VENUE]->(aVenue)
WHERE previousEvent.time < timestamp() AND
abs(distance(point(venue), point(aVenue))) < 500

WITH futureEvent, group, venue, commonTopics,
myGroup, previousEvents, distance,
COUNT(previousEvent) AS eventsNearVenue
WITH futureEvent, group, venue, commonTopics,
myGroup, previousEvents, distance,
eventsNearVenue, CASE WHEN myGroup THEN 5 ELSE 0
END AS myGroupScore
WITH futureEvent, group, venue, commonTopics,
myGroup, previousEvents, distance,
eventsNearVenue, myGroupScore,
round((futureEvent.time - timestamp()) /
(24.0*60*60*1000)) AS days

RETURN futureEvent.name, futureEvent.time,
group.name, venue.name, commonTopics, myGroup,
previousEvents, days, distance, eventsNearVenue,
myGroupScore + commonTopics + eventsNearVenue -
days AS score
ORDER BY score DESC

Part seven · Procedures

Using a procedure’s output in a query

18

CALL db.labels() YIELD label AS label
RETURN label ORDER BY label

Check APOC installed correctly

CALL dbms.procedures() YIELD name AS name,
signature AS signature
WITH name, signature
WHERE name STARTS WITH "apoc"
RETURN name, signature

Formatting timestamps

MATCH (venue)<-[:VENUE]-(event:Event)<-
[:HOSTED_EVENT]-(group:Group)
WHERE event.time < timestamp()
WITH event, venue, group
ORDER BY event.time DESC
LIMIT 5
WITH event, group, venue,
apoc.date.format(event.time, 'ms') as dateTime
RETURN event.name, group.name, venue.name,
dateTime

Query the procedures list to retrieve signature of a procedure

CALL dbms.procedures() YIELD name AS name,
signature AS signature
WITH name, signature
WHERE name = "apoc.load.json"
RETURN name, signature

Importing JSON from the meetup.com API

CALL
apoc.load.json("https://api.meetup.com/graphdb-
london/photos?&sign=true&photo-host=public")
YIELD value AS document
WITH document WHERE
EXISTS(document.photo_album.event.id)
RETURN document.link AS link,
 document.created AS time,
 document.id AS photoId,
 document.member.id as memberId,
 document.photo_album.event.id AS eventId
// Started streaming 189 records after 1 ms and
completed after 1256 ms.

Note: the API above uses the urlname property to look up photos
for a group.
To find the urlname for other groups:

MATCH (group:Group)
RETURN group.urlname
ORDER BY rand() LIMIT 10

19

Part eight · Latent social graph + transactions

Finding people that I know

MATCH (me:Member)-[:RSVPD]->()<-[:RSVPD]-
(otherPerson)
WHERE me.name CONTAINS 'Pieter Cailliau'
WITH otherPerson, COUNT(*) AS commonEvents
ORDER BY commonEvents DESC LIMIT 10
RETURN otherPerson.name, commonEvents

Materialising the latent social graph

// See the Setup database section above.

How many of our friends have RSVPD?

MATCH (member:Member) WHERE member.name CONTAINS
'Pieter Cailliau'

MATCH (futureEvent:Event)
WHERE timestamp() + (7 * 24 * 60 * 60 * 1000) >
futureEvent.time > timestamp()

WITH member, futureEvent, EXISTS((member)-
[:MEMBER_OF]->()-[:HOSTED_EVENT]->(futureEvent))
AS myGroup
OPTIONAL MATCH (member)-[:INTERESTED_IN]->()<-
[:HAS_TOPIC]-()-[:HOSTED_EVENT]->(futureEvent)

WITH member, futureEvent, myGroup, COUNT(*) AS
commonTopics
WHERE commonTopics >= 3
OPTIONAL MATCH (member)-[rsvp:RSVPD]->
(previousEvent)<-[:HOSTED_EVENT]-()-
[:HOSTED_EVENT]->(futureEvent)
WHERE previousEvent.time < timestamp()

WITH member, futureEvent, commonTopics, myGroup,
COUNT(rsvp) AS previousEvents

OPTIONAL MATCH (member)-[:FRIENDS]-(:Member)-
[rsvpFriend:RSVPD]->(futureEvent)
WITH member, futureEvent, commonTopics, myGroup,
previousEvents, COUNT(rsvpFriend) AS
friendsGoing

MATCH (venue)<-[:VENUE]-(futureEvent)<-
[:HOSTED_EVENT]-(group)

WITH member, futureEvent, group, venue,
commonTopics, myGroup, previousEvents,
friendsGoing, distance(point(venue),
point({latitude: 51.518698, longitude:
-0.086146})) AS distance
OPTIONAL MATCH (member)-[rsvp:RSVPD]->
(previousEvent)-[:VENUE]->(aVenue)
WHERE previousEvent.time < timestamp() AND

20

abs(distance(point(venue), point(aVenue))) < 500

WITH futureEvent, group, venue, commonTopics,
myGroup, previousEvents, friendsGoing, distance,
COUNT(previousEvent) AS eventsAtVenue
WITH futureEvent, group, venue, commonTopics,
myGroup, previousEvents, friendsGoing, distance,
eventsAtVenue, CASE WHEN myGroup THEN 5 ELSE 0
END AS myGroupScore
WITH futureEvent, group, venue, commonTopics,
myGroup, previousEvents, friendsGoing, distance,
eventsAtVenue, myGroupScore,
round((futureEvent.time - timestamp()) /
(24.0*60*60*1000)) AS days

RETURN futureEvent.name, futureEvent.time,
group.name, venue.name, commonTopics, myGroup,
previousEvents, friendsGoing, days, distance,
eventsAtVenue, myGroupScore + commonTopics +
eventsAtVenue + (friendsGoing / 2.0) - days AS
score
ORDER BY score DESC

Who are these friends?

MATCH (member:Member) WHERE member.name CONTAINS
'Pieter Cailliau'

MATCH (futureEvent:Event)
WHERE timestamp() + (7 * 24 * 60 * 60 * 1000) >
futureEvent.time > timestamp()

WITH member, futureEvent, EXISTS((member)-
[:MEMBER_OF]->()-[:HOSTED_EVENT]->(futureEvent))
AS myGroup
OPTIONAL MATCH (member)-[:INTERESTED_IN]->()<-
[:HAS_TOPIC]-()-[:HOSTED_EVENT]->(futureEvent)

WITH member, futureEvent, myGroup, COUNT(*) AS
commonTopics
WHERE commonTopics >= 3
OPTIONAL MATCH (member)-[rsvp:RSVPD]->
(previousEvent)<-[:HOSTED_EVENT]-()-
[:HOSTED_EVENT]->(futureEvent)
WHERE previousEvent.time < timestamp()

WITH member, futureEvent, commonTopics, myGroup,
COUNT(rsvp) AS previousEvents

OPTIONAL MATCH (member)-[:FRIENDS]-
(friend:Member)-[rsvpFriend:RSVPD]->
(futureEvent)
WITH member, futureEvent, commonTopics, myGroup,
previousEvents, COUNT(rsvpFriend) AS
friendsGoing, COLLECT(friend.name) AS friends

MATCH (venue)<-[:VENUE]-(futureEvent)<-
[:HOSTED_EVENT]-(group)

WITH member, futureEvent, group, venue,
commonTopics, myGroup, previousEvents,

21

friendsGoing, friends, distance(point(venue),
point({latitude: 51.518698, longitude:
-0.086146})) AS distance
OPTIONAL MATCH (member)-[rsvp:RSVPD]->
(previousEvent)-[:VENUE]->(aVenue)
WHERE previousEvent.time < timestamp() AND
abs(distance(point(venue), point(aVenue))) < 500

WITH futureEvent, group, venue, commonTopics,
myGroup, previousEvents, friendsGoing, friends,
distance, COUNT(previousEvent) AS eventsAtVenue
WITH futureEvent, group, venue, commonTopics,
myGroup, previousEvents, friendsGoing, friends,
distance, eventsAtVenue, CASE WHEN myGroup THEN
5 ELSE 0 END AS myGroupScore
WITH futureEvent, group, venue, commonTopics,
myGroup, previousEvents, friendsGoing, friends,
distance, eventsAtVenue, myGroupScore,
round((futureEvent.time - timestamp()) /
(24.0*60*60*1000)) AS days

RETURN futureEvent.name, futureEvent.time,
group.name, venue.name, commonTopics, myGroup,
previousEvents, friendsGoing, friends[..5],
days, distance, eventsAtVenue, myGroupScore +
commonTopics + eventsAtVenue + (friendsGoing /
2.0) - days AS score
ORDER BY score DESC

Part nine · Scoring recommendations

The Pareto function

CALL dbms.functions()
YIELD name AS name, signature AS signature,
description AS description
WHERE name = "apoc.scoring.pareto"
RETURN signature, description

UNWIND range(0,21) AS value
RETURN value, apoc.scoring.pareto(
1,10,20,value) AS score

Scoring with Pareto

MATCH (member:Member) WHERE member.name CONTAINS
'Pieter Cailliau'
MATCH (futureEvent:Event)
WHERE timestamp() + (7 * 24 * 60 * 60 * 1000) >
futureEvent.time > timestamp()

WITH member, futureEvent, EXISTS((member)-
[:MEMBER_OF]->()-[:HOSTED_EVENT]->(futureEvent))
AS myGroup
OPTIONAL MATCH (member)-[:INTERESTED_IN]->()<-
[:HAS_TOPIC]-()-[:HOSTED_EVENT]->(futureEvent)

WITH member, futureEvent, myGroup, COUNT(*) AS
commonTopics

22

WHERE commonTopics >= 3
OPTIONAL MATCH (member)-[rsvp:RSVPD]->
(previousEvent)<-[:HOSTED_EVENT]-()-
[:HOSTED_EVENT]->(futureEvent)
WHERE previousEvent.time < timestamp()

WITH member, futureEvent, commonTopics, myGroup,
COUNT(rsvp) AS previousEvents

OPTIONAL MATCH (member)-[:FRIENDS]-
(friend:Member)-[rsvpFriend:RSVPD]->
(futureEvent)
WITH member, futureEvent, commonTopics, myGroup,
previousEvents, COUNT(rsvpFriend) AS
friendsGoing, COLLECT(friend.name) AS friends

MATCH (venue)<-[:VENUE]-(futureEvent)<-
[:HOSTED_EVENT]-(group)

WITH member, futureEvent, group, venue,
commonTopics, myGroup, previousEvents,
friendsGoing, friends, distance(point(venue),
point({latitude: 51.518698, longitude:
-0.086146})) AS distance
OPTIONAL MATCH (member)-[rsvp:RSVPD]->
(previousEvent)-[:VENUE]->(aVenue)
WHERE previousEvent.time < timestamp() AND
abs(distance(point(venue), point(aVenue))) < 500

WITH futureEvent, group, venue, commonTopics,
myGroup, previousEvents, friendsGoing, friends,
distance, COUNT(previousEvent) AS eventsAtVenue
WITH futureEvent, group, venue, commonTopics,
myGroup, previousEvents, friendsGoing, friends,
distance, eventsAtVenue
WITH futureEvent, group, venue, commonTopics,
myGroup, previousEvents, friendsGoing, friends,
distance, eventsAtVenue,
toint(round((futureEvent.time - timestamp()) /
(24.0*60*60*1000))) AS days

WITH futureEvent, group, venue, commonTopics,
myGroup, previousEvents, friendsGoing, friends,
distance, eventsAtVenue, days,
apoc.scoring.existence(5, myGroup) AS
myGroupScore,
apoc.scoring.pareto(1, 3, 10, days) AS
daysScore,
apoc.scoring.pareto(1, 5, 10, commonTopics) AS
topicsScore,
apoc.scoring.pareto(1, 7, 20, eventsAtVenue) AS
eventsAtVenueScore,
apoc.scoring.pareto(1, 5, 20, friendsGoing) AS
friendsGoingScore

RETURN futureEvent.name, futureEvent.time,
group.name, venue.name, commonTopics, myGroup,
previousEvents, friendsGoing, friends[..5],
days, distance, eventsAtVenue, myGroupScore +
topicsScore + eventsAtVenueScore +
friendsGoingScore - daysScore AS score
ORDER BY score DESC

23

Scoring our friendships – find the top 10 people similar to you,
calculating a « dice similarity »

MATCH (m1:Member) WHERE m1.name CONTAINS 'Pieter
Cailliau'

MATCH (m1)-[friendship:FRIENDS]-(m2:Member)
WITH m1, m2, friendship
MATCH (m1)-[:RSVPD]->(commonEvent)<-[:RSVPD]-
(m2)
WITH m1, m2, COUNT(commonEvent) AS commonEvents
WITH m1, m2, commonEvents, SIZE((m1)-[:RSVPD]->
()) AS m1Rsvps, SIZE((m2)-[:RSVPD]->()) AS
m2Rsvps
RETURN m1.name, m2.name, commonEvents, m1Rsvps,
m2Rsvps, (2 * 1.0 * commonEvents) / (m1Rsvps +
m2Rsvps) AS diceSimilarity
ORDER BY diceSimilarity DESC
LIMIT 10

Friendship-based recommendations – Find the events that our best
10 friends are planning to attend

Let’s get away from the mega event recommendation query we’ve
built up over the day and do some recommendations based purely
on our best Meetup friendships.

MATCH (member:Member) WHERE member.name CONTAINS
'Pieter Cailliau'
MATCH (member)-[friendship:FRIENDS]-(friend)
WITH member, friend, friendship
ORDER By friendship.score DESC
LIMIT 10
MATCH (friend)-[:RSVPD]->(futureEvent)<-
[:HOSTED_EVENT]-(group)
WHERE futureEvent.time > timestamp()
RETURN futureEvent.name, group.name, COUNT(*) AS
friendsGoing, COLLECT(friend.name) AS friends
ORDER BY friendsGoing DESC

Dice similarity is just one of the similarity metrics that we could have
used. There’s also Jaccard, cosine and overlap to name just a few.

Part ten · Your turn
What else can we add to the model to come up with more
interesting recommendations? Here you have some time to play
around with the data and come up with something new

Here are some ideas that we thought of:

Merge duplicate venues – can we write a query that finds
duplicate venues?

Social network – what events do our twitter/Facebook friends
attend? Can we import that data and use it?

Topic ontology – how are topics related? Can you find an

24

ontology that we could encode in the graph?

Event similarity based on descriptions - use Latent Dirichlet
Allocation to derive categories

Day of the week – do we only go to events on certain days of the
week? do we go to different events on weekdays vs weekend?

meetup.com provides several streaming APIs -
http://www.meetup.com/meetup_api/docs/stream/2/rsvps/#polling
http://www.meetup.com/meetup_api/docs/stream/2/rsvps/#polling - can
we use those to update the graph on the fly?

Or if none of those appeal you can try something of your own.

If we have time we’ll let a few people show the group what they’ve
come up with.

15 FINSBURY CIRCUS, LONDRES, ANGLETERRE, ROYAUME-UNI • 11° MOSTLY CLOUDY

Created in Day One

http://www.meetup.com/meetup_api/docs/stream/2/rsvps/#polling

